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I. INT RODUCTION

The electrothermal-chemical (ETC) gun, generically shown in Figure 1, is a propulsion concept which

utilizes a low-mass, high-energy plasma to initiate and, hopefully, control the combustion/vaporization of

the working fluid (propellant) during the ballistic cycle. Controlling combustion (exothermic working

fluid) or vaporization (endothermic working fluid) of the working fluid in the ETC gun is necessary in

order to tailor the pressure-time profile in the gun. Theoretically, tailoring the pressure-time profile to

obtain a "flatter" and extended pressure curve should result in enhanced performance (increased muzzle

energy) and provide a "softer" launch environment to enhance projectile integrity, especially for "smart"

projectiles. In addition, precise control of the pressure history should also allow for the required projectile

velocity repeatability required of indirect fire support (artillery) applications. An essential facet of
understanding the control of the process through the plasma-propellant interaction is an accurate

description of the energy release rate (/s).

In previous work (Wren and Oberle 1990, 1992), the authors derived and implemented an inverse

analysis of experimental ETC gun firing data to determine if a relationship between electrical energy input

and energy release rates was indicated. For that analysis, variable thermochemical properties of the

propellant gas/plasma mixture were assumed to be dependent only on the constitutive components of the

propellant and the electrical energy density (kJ/g; ratio of total electrical energy input to consumed

propellant). Implementation of this variable thermochemistry in the computer model was through the use

of "look-up" tables, similar to Table I for JA2 propellant (Bunte and Oberle 1989). Values in the tables

were obtained using the thermodynamic equilibrium code BLAKE (Freedman 1982) at a fixed loading

density (/d) (g/cm 3; ratio of consumed propellant to free volume) of 0.2 g/cm 3.

However, a detailed analysis of the results from the study identified several potential shortcomings

related to the use of look-up tables for the thermochemical properties. First, the values of the

thermochemical properties are dependent on the loading density, as illustrated in Table 2 for JA2

propellant.

Fortunately, it has been shown (Robbins 1991) that for traditional solid propellant modeling,

consideration of the loading density dependence of values of the thermochemical properties has no

significant (<1%) impact on simulation results, even through loading density (ratio of mass of gas to gas

volume in g/cm 3) can vary over a large range, as illustrated in Figure 2. Similar results have yet to be

demonstrated for ETC simulations. In fact, for the ETC gun, the problem of determining the energy

1
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Figure 1. Schematic of ETC gun.

Table 1. Variable Thermochemical Properties for JA2 as a Function of
Electrical Energy Density

Electrical Molecular Specific
Energy Input Temperature Impetus Weight 7 Energy

(k J/g) (K) 0Jig) 0Jig)

0 3,424 1,144 24.886 1.2254 5,075
1 3,959 1,334 24.686 1.2219 6,012
2 4,401 1,504 24.337 1.2219 6,778
3 4,776 1,663 23.882 1.2241 7,421
4 5,113 1,819 23.378 1.2275 7,996
5 5,429 1,975 22.857 1.2316 8,528
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Table 2. Loading Density Dependence of Values for Themochemical Properties
Computed by BLAKE for JA2 Popelamt

Molecular
I Dadg Weig Frown Specific
Densit Temp Impetus Gas Co-Vol Y Energy
0=3K) U/_ (Jig) (CM3lg) (J/g)

0.1000 3,371 1,134.5 24.704 1.031 1.2229 5,090

0.2M00 3,395 1,140.4 24.749 0.991 1.2254 5,059
0.3000 3,408 1,143.7 24.664 0.948 1.2305 4,962
0.4000 3.417 1.145.8 24.797 0.903 1.2379 4.816

05M 3,425 1,147.3 24.820 0.858 1.2474 4,367
0.6W00 3,431 1,148.3 24.846 0.814 1.2589 4,435

0.60

",-0.50

Cl)

%-0.40

>-,

0.30

0a0.20

JA2, 120mmo Constant Thermochems
00.10at loading density

of 0.02 gcc
Average Id 0.236

0 .00 . ..........
0 2 4 6 8 10Time (ms)

Fgure 2. Loading density history in a 120-mm simulation using IBHVG2 (Anderson an
Ficle 198_7).
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release rate is further complicated by the staged introduction of electrical energy which produces

combustion gases with even larger changes in thermochemical values compared to solid propellants alone

(see Tables 1 and 2). Thus, it appears that for ETC interior ballistic (IB) calculations, both the loading

and electrical energy densities should be considered in determining the energy release rate. Although

some earlier (Oberle 1989; Gough 1989; Wren and Oberle 1990, 1992) investigations of ETC performance

considered variations in thermochemical values (energy release rate) as a function of electrical energy

density, no work has incorporated both variations in loading density and electrical energy density.

A second and potentially more serious shortcoming to the use of a look-up table is the accuracy of

the table values as the electrical energy density increases to produce average gas temperatures above

5,000 K. The thermochemical values typically utilized in IB codes are flame temperature, chemical

energy, and covolume based on polynomial fits to experimental values of specific heat at constant

pressure, C.. In the case of BLAKE, the JANAF data for C. for all of the product gases ar computed

using statistical mechanics based on spectroscopic data. Although these calculations can be readily

extended well above 5,000 K, tables of these data traditionally terminate around 5,000 K. Thus, the

fittings of the data are valid only to 5,000 K. The polynomial fitting functions for CP take on values to

plus or minus infinity outside the fitting range; C, will behave similarly. Their ratio y will approach one

in the limit, and the value of y above 5,000 K is thus useless for the ETC application (Freedman 1991),

since gas temperatures for ETC propellants may be high, at least locally, where the plasma temperature

is typically in the range of 10,000-15,000 K. Thermochemical values for high electrical energy densities,

and hence, high temperatures, are thus ill-defined and based on extrapolated polynomial fits.

Traditionally, the chemical energy is determined primarily from impetus and the ratio of specific heats

(y). Since y is directly related to specific heat at constant pressure and Cp is supplied to BLAKE as

experimental data, it might be expected that extrapolated values of y are particularly poorly behaved. In

the previous effort (Wren and Oberle 1990, 1992) to determine energy release rates, an adequate

description of y above 5,000 K was a major shortfall. In addition, the y calculated by BLAKE is for the

gas phase only and does not address the use of solid particles used in some experimental ETC propellants.

Previous IB calculations have shown that traditional measures of "goodness" of the propellant may not

be applicable to ETC propellants containing large amounts of solid particles such as aluminum (White and

Oberle 1989).

4



Therefore, to address the question as to whether fixed thermochemistry will be sufficient to describe

the ETC lB process and bypass the use of y, the thermochemical code BLAKE has been directly linked

to a lumped parameter IB model and an inverse model developed earlier. The computed value of the

space-mean pressure is supplied directly to the IB and inverse codes, thereby directly including the effect

of the loading density and electrical energy density and obviating the need for impetus and y in the

calculation of energy. Although the space-mean pressure is also related to the experimental values of

specific heat at constant pressure, it is expected to be much more reliable since it is a function of several

well-defined variables (Freedman 1991).

2. DESCRIPTON OF THE MODELS

The thermochemical code BLAKE was revised to serve as a subroutine to a main calling program.

BLAKE requires the constituent data as well as values of electrical energy density (electrical energy input

in kilojoules/mass of propellant consumed in grams) and loading density. The thermochemical code then

remums the space-mean pressure of the gas assuming equilibrium thermodynamics.

Two implementations of the thermochemical code are explored in this report. The first is a traditional

time-marching lB formulation using a Lagrange gradient and expressed in a form to utilize the space-mean

pressure, denoted as IBBLAKE. This formulation uses as input the gun geometry, projectile mass and

resistive pressure profile, propellant geometry, propellant thermochemistry, and electrical energy history.

By iterating on the mass of propellant consumed in a time step, which is passed to BLAKE along with

the electrical energy, the conservation equations are satisfied. Since the equilibrium state of the gas at any

time step must consider the work during expansion in terms of projectile kinetic energy, fluid kinetic

energy, and other losses (assumed 0.0 for the purposes of this study), the electrical energy is reduced by

the predicted kinetic energies of the gas and projectile on any time step. (Note: This may result in a

negative electrical energy input to the BLAKE calculation.) The mass of propellant consumed is then

determined and the pressures, projectile motion, and other IB information am output.

Secondly, the BLAKE subroutine was integrated into an inverse code (Wren and Oberle 1990.1992)

which utilizes experimental data in order to infer the mass of propellant consumed at any time step. The

linked model is denoted as INVBLAK. The inverse model uses as input experimental values of projectile

position, electrical energy input to the gun, and chamber pressure. Assuming a Lagrange gradient, it is

then possible to infer space-mean pressure in the experiment since the gas volume, projectile kinetic

5



energy, and fluid kinetic energy are known. The BLAKE subroutine is used to supply a space-mean

pressure based on an electrical energy density and loading density for the propellant gases. By iterating

on the mass of propellant consumed, the space-mean pressure in the experiment and the space-mean

pressure predicted by BLAKE are simultaneously satisfied. The output is then the mass of propellant

consumed at time step.

3. COMPARISON WITH SOLID PROPELLANT MODEL

In order to assess the effect of incorporating updated thermochemical values in a solid propellant only

simulation, the gun described in Table 3 was modeled with IBHVG2 and IBBLAKE. To perform the

simulation, a choice concerning the bum rate and, hence, the mass generation rate for the solid propellant,

must be made. For both 1B codes, the bum rate is provided in the form r = b0M . If fixed thermochemical

values are utilized in the IB code, then the choice for the bum rate is straightforward. Use the coefficient

b and exponent n determined via closed chamber data and the fixed thermochemical values. (Note that

the burn rate is thus a function of the thermochemical values). However, if variable thermochemical

values are to be used in the 1B code, then the bum rate should be adjusted to be consistent with the closed

chamber data and thermochemical values. Since for this report the thermochemical values are a function

of loading density, it was necessary to adjust the bum rate to account for the variability in Id shown in

Figure 2. One approach would be to perform an extensive series of closed chamber firings at different

loading densities. However, such a series of firings was not feasible for this report.

Table 3. Gun Parameters Used in Simulation

Bore Diameter. 120 mm Projectile Mass: 11.4 kg
Chamber Volume: 9,750 cm 3  Charge Mass: 8.8 kg
Projectile Travel: 475 cm Propellant: JA2

Thus, the bum rate as a function of loading density is estimated by the following approach. The final

equation for computing the bum rate r from closed chamber data is

r = •, (I)
pA

6



where Ph is the time rate of change of mass, p the material density, and A the reacting surface area.

Assuming constant propellant density, p, and a neutral (constant) reacting surface area, A, the bum rate

is directly proportional to the time rate of change of the mass, th,

r - kmh. (2)

Now the mass history (mass vs. time) is determined from the closed chamber pressure history by

determining the total chemical energy necessary to produce the observed pressure and the relation,

total chemical energy (TCE) = mass propellant consumed * propellant specific energy

=m * e. (3)

If variable thermochemical values ar utilized, then the propellant specific energy, e, will also be a

function of loading density. However, the total chemical energy required is dependent only on the

observed closed chamber pressure.

Thus,

mi,(P1 ) * eu,(P1 ) a TCE(P1 )

U m•a(P 1 ) * ela (PI) , (4)

where P1 represents an observed pressure, and /ll and W2 values are associated with two different loading

densities. To compute fh, consider two pressures, P, and P2, measured in a time step At. From

Equation 4,

midl (P2)eldl (P 2 ) - mldl (PI)eldI (PI) - mWd2 (P 2 )e'd 2 (P 2 ) - m~d2 (Pl)Oed 2 (P 2 ) (5)

At At

7



However, the specific energy is a function of loading density, not pressure; thus,

rnldI eldI -thld2eld2 (6)

or

rnid! eLd2 (7)

*ld 2  eLdl

Combining Equations 2 and 7,
ril- = k 1hid i W - e d2 (8)

rld2 k_"M2  eldl

or

ridl eldl 9

r(ld 0.2 glcm3) e(ld - 0.2lgcm3)

assuming that the closed chamber data has been fitted with a one-pan bum rate, which is usually the case.

Equation 9 is used to adjust the bum rate as a function of loading density. For the single-perforated grain

under consideration, the neutral surface area assumption is felt to be reasonable.

The results are shown in Table 4. It can be seen that the results are in good agreement, indicating

that the approximation of the thernochemistry of the propelling gas using constant thermochemical values

at a Id of 0.2 g/cm3 and a pressure-dependent bum raue law based on a Id of 0.2 g/cm3 used in IBHVG2

ame reasonable. Thus, it appears that constant thermochemical values at a Id of 0.2 g/cm 3 provides a good

simulation of solid propellant perfonrance.

Table 4. Comparison of IBHVG2 and IBBLAKE for Simulation of 120-mm
Gun Using Single-Perforated JA2 Propellant

Maximum
Pressure Muzzle Velocity

(M]N) (m/s)

IBHVG2 572 1,403
IBBLAKE 570 1,415
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In the case of ETC propellants, energy is not only a function of loading density but a function of

electrical energy density as well. Figure 3 shows a graph of energy vs. /d vs. electrical energy density

for a epresentative candidate ETC propellant of 80% by mass of HAN and methanol in a stoichiometric

mixture and 20% water. Current lumped parameter ETC ID models using variable thermochemistry utilize

tables of energy vs. electrical energy density at a constant id of 0.2 g/cm3. Figure 3 shows significant

variation of energy of up to 30% at a constant/d = 0.2 g/cm 3, with electrical energy densities in the range

of 0.4 kJ/g to 2.0 kJ/g. Thus, it might be expected that greater differences between IBHVG2 and

IBBLAKE would be observed.

In order to determine a qualitative difference between the two types of simulations (and since a

burning rate is not known for the ETC propellant considered), the simulation is performed with all input

parameters identical to those used previously for the solid propellant except that the thermochemical

properties are changed to those of the HAN, methanol, and water mixture and the burning rate is not

adjusted. A comparison of the maximum pressure and muzzle velocity is shown in Table 5. The

maximum breech pressures are comparable, and the projectile velocity differs by 4%, a larger difference

than noted in the JA2 simulation.

Table 5. Comparison of IBHVG2 and IBBLAKE for Simulation of 120-mm
Gun Using a HAN/Methanol/Water Mixture

Maximum
Pressure Muzzle Velocity

(MAPa) (m/s)

IBHVG2 350 1,128
IBBLAKE 349 1,172

Thus, it appears that I1 models using constant thermochemical values at a loading density of

0.2 g/cm 3, combined with pressure-dependent experimental data reduced at the same Id, provide good

simulation of traditional solid propellant guns based on this limited study. However, ETC propellants

combined with electrical energy may display thermochemical properties which are more strongly affected

by loading density considerations. Thus, it appears that traditional IB methods of approximating the

properties of the propelling gas may not be adequate in ETC simulations.

9
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4. COMPARISON WITH INVERSE MODEL

An inverse model was developed previously (Wren and Oberle 1990, 1992) using variable

thermochemistry at Id = 0.2 g/cm3 and applied to a number of experimental shots. The model requires

experimental breech pressure, projectile position, and electrical energy input at a time step and infers the

mass of propellant consumed based on an energy balance equation. At gun pressures, compression of the

liquid propellant can result in volume changes which affect the calculation of consumed mass. Thus, the

model has been extended to treat compression of the working fluid (propellant) and consider losses as well

as to extrapolate the thermochemical data (Wren and Oberle 1992). The model was revised for this study

to permit the use of BLAKE as a subroutine. The mass of propellant consumed is that required to produce

the space-mean pressure inferred from the experiment.

Electrical energy input for a 30-mm experimental firing, Shot 39, performed by GT-Devices (Greig

1990) as part of a repeatability series using titanium hydride and water is shown in Figure 4 by the dotted

line. The previous inverse model results (Wren and Oberle 1992) using a table of variable thermochemical

properties (see Table 6) at a fixed Id of 0.2 g/cm3 is shown in Figure 4 by the solid line. In previous work,

the�momcal values outside the range of Table 6 were taken to be the first and last values in the table

(Wren and Oberle 1990) or were extrapolated (Wren and Oberle 1992). However, early (during the first

millisecond) in the lB cycle, electrical energy densities are predicted to be quite high (above 10 kJ/g) and

temperatures are high (above 5,000 K). However, the projectile motion is also not well described during

the first millisecond in Shot 39. Hence, the estimate of mass consumed during the time from 0.0 to

1.0 ms is not reliable. It is noted that the inverse analysis is an energy balance at each time step

independent of any other time step. Hence, the difficulty with prediction of mass consumed from 0.0 to

1.0 ms does not influence the prediction at a later time. The total mass of propellant in the experiment

is 168.84 g. As indicated by the solid line in Figure 4, approximately 150 g of propellant is inferred to

be consumed using a variable thennochemistry table (Table 6).

The linked inverse-BLAKE code (INVBLAK) results are shown by the triangles in Figure 4. It is

seen that significantly less fluid is inferred to be consumed. These results are consistent with experimental

observations that a quantity of unburned fluid was present at the conclusion of these shots (Greig 1990).

For comparison, the Id vs. time required by BLAKE to match the experimental space-mean pressure is

shown in Figure 5. It is noted that the Id stays below 0.1 g/Cm 3, a regime in which the specific energy

is higher than for a Id of 0.2 g/cm3 (see Figure 3). The experiment has a large amount of ullage initially,

II



and if all te popellaM ractcd the finaldd would be 0.07 g/cm3. Thus, the inclusion of thenmochemical

dependence on loading and electrical energy densities in the inverse model appears to provide a better

estimate of fie mass of ptopellant consumed in the ETC gun firing examined.

Table 6. Variable Thermochemical Values for 50% Ti3H2 and 50% H20 Plus Electrical Energy
at Id - 02 g/C, 3

I- -

lectrica Energy Molecular Specific
Iqput Temperature Impetus Weight T Energy
(kJg) (K) (J/i) (Jig)

2 2,162 679.3 6.716 12722 2,50
3 2.630 826.7 &.714 1.2722 3.240
4 3,078 969.0 6.704 1.2553 3.970
5 3,2 1106.3 6.682 1.2443 4,670
6 3,899 1,239.2 6.645 1.2370 5.330
7 4=•6 168.6 6.596 1.325 5,950
8 4,604 1,495.8 6.546 1.2302 6,520
9 4,917 1,622.4 6.506 1.2294 7,060

10 5,210 1,1749.4 6.487 1.2313 7,560

Shot 39
200.00 .400.00

- -- - - -

I
"0 I >O

E

C5o0-00
A 200.00 LI.

o 0 -
()/ "U

0.00 0.00
o

0.00 1.00.0.00
Time (ms)

Now: Evans" elica r ut (doed), M of popawcm omiWed bsed a muwn• mdel wizh Wble of
smociwmiWAJ vaha (soW). Mas of pupu consmed based M anvWe model linked ID BLAKE (uingms).

Figure 4. Inverse model results for 30-mm titanium hydride and water fiinit.
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0.20

-,0157

V)

650.05-
D
0

0.00 1.0020 3.00 4.00
Time (ins)

figure 5. Loading dcewnstv. time for 30-mm tit-=*= h~drid and wMte firmf based on
-iverse ^model io BL

5. CONCLUSIONS

A thenmochemical equilibrium code. BLAKE. has been directly linked to both an IB code and an

inverse code in order to assess the potetial impwvement in describing the enrgy release rate in ETC gun

modeling INe iinverse analysis aaeinptsto determine fth dcoposiutio r gass geneatio rue necessary

to, satisfy an energ balance equation based on experimental data.

The analysis was applied to the following: 1) a simulation of a standard 120-mm gun with JA2

pnvpellnt 2) a simulation of a stanidard 1203-mmn gun with a potential representative EXC propellant; and

3) an inverse model of a 30-mm experimental firing using titanium hydride and! water as fth propellant

(woiking fluid). The results suggest the following:

(1) The throchemical code BLAKE can fuinction as a subroutine to an lB code.

13



(2) Constant values of thermochemical properties and bum rates used in solid propellant modeling

yield comparable results to the linked thermochemical-IB model.

(3) There is a greater difference between an IB simulation linked to BLAKE of an ETC propellant

and an IB simulation using constant thermochemical values than with traditional solid propellants.

The muzzle velocities differ by 4%, a larger difference than the solid propellant considered.

(4) A consideration of variable thermochemistry via a direct link to BLAKE in an inverse model (as

opposed to tables of thermochemical values based on a constant loading density of 0.2 g/cm3)

makes a significant difference in the inferred values of mass of propellant consumed.

(5) Treatment of the dependence of thermochemistry on both electrical energy density and loading

density appears to provide a better model of the state of the propelling gas in ETC applications.
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